Solving Dynamics Problems

Example 1

A 20 kg box is pulled across a horizontal surface by a 10 N force parallel to the surface. If the box starts from rest, how long will it take to reach a velocity of $6.5 \mathrm{~m} / \mathrm{s}$

Example 2

A 20 kg box is pulled across a horizontal surface by a 10 N force applied at an angle of 60° above the horizontal. If the box starts from rest, how far will it have moved after 8.3 s ?

Example 3

A 20 kg box is pulled across a horizontal surface by a 30 N force directed East and a 40 N force directed North. Determine the magnitude and direction of the acceleration of the box.

Dynamics Worksheet \#1

In each of the following questions, frictional effects may be disregarded. Your solution for each question should include a free body diagram and all of your work.

1. An object with a mass of 15 kg rests on a frictionless horizontal plane and is acted upon by a horizontal force of 30 N .
a) What is its acceleration? $\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)$
b) How far will it move in 10 s ? (100 m)
c) What will be its velocity after $10 s$ assuming it starts from rest? ($20 \mathrm{~m} / \mathrm{s}$)
2. A car with a mass of 1000 kg is moving in a straight line at a constant speed of $30 \mathrm{~m} / \mathrm{s}$. It is brought to rest in 25 s . What constant force is acting to stop the car? $(-1200 \mathrm{~N})$
3. Forces of $100 \mathrm{~N}[\mathrm{~N}]$ and $80 \mathrm{~N}[\mathrm{~W}]$ act simultaneously on an object of mass 10 kg . What is the acceleration of the object? $\left(12.8 \mathrm{~m} / \mathrm{s}^{2}\left[51^{\circ} \mathrm{N}\right.\right.$ of W$\left.]\right)$
4. An empty railway car of mass 15000 kg is being pulled along a smooth, horizontal track by a tractor traveling on a road parallel to the track. The rope joining the tractor and the railway car makes an angle of 25° with the track.
a) If the acceleration of the railway car is $0.80 \mathrm{~m} / \mathrm{s}^{2}$, what is the force exerted by the rope on the railway car? $(13240.5 \mathrm{~N})$
b) Why does the railway car have no sideways motion?
5. Two girls, one of mass 40 kg and the other of mass 60 kg , are standing side by side in the middle of a frozen pond. One pushes the other with a force of 360 N for 0.10 s . The ice is essentially frictionless.
a) What is each girl's acceleration? $\left(9 \mathrm{~m} / \mathrm{s}^{2},-6 \mathrm{~m} / \mathrm{s}^{2}\right)$
b) What velocity will each girl acquire in the 0.10 s that the force is acting? $(0.9 \mathrm{~m} / \mathrm{s}$, $-0.6 \mathrm{~m} / \mathrm{s}$)
c) How far will each girl move during the same time period? $(0.045 \mathrm{~m},-0.03 \mathrm{~m})$
6. (Challenging) A man drags a package across the floor with a force of 40 N directed at an angle θ to the horizontal. The mass of the package is 10 kg . If the acceleration of the package is $3.5 \mathrm{~m} / \mathrm{s}^{2}$, and friction can be neglected, what is $\theta ?\left(29^{\circ}\right)$
7. (Challenging) Two crates, of mass 12 kg and 20 kg , respectively, are pushed across a frictionless floor together, the 20 kg crate in front of the 12 kg crate. Their acceleration is $+9.0 \mathrm{~m} / \mathrm{s}^{2}$. Calculate each of the following.
a) The force applied to push the crates. ($288 N$)
b) The action-reaction forces between the two crates (in other words, the force exerted by each crate on the other). (180 N)
